by Dr. Len Leshin, MD, FAAP
Note: The subject of prenatal testing for Down syndrome is an emotionally charged one. I am presenting this essay as a guide to parents who are faced with the prenatal tests offered by their doctor. If your fetus has been diagnosed as having Down syndrome or is simply at high risk, please spend some time to learn more about the condition. An excellent web site to start with is Down Syndrome: The WWW Page, especially its page on Welcoming New Babies. Also, check out the many home pages on my list of Down syndrome websites.
Introduction
Over the last 10 years, new technology has improved the methods of detection of fetal abnormalities, including Down syndrome. While there are ways to diagnose Down syndrome by obtaining fetal tissue samples by amniocentesis or chorionic villus sampling, it would not be appropriate to examine every pregnancy this way. Besides greatly increasing the cost of medical care, these methods do carry a slight amount of risk to the fetus. So screening tests have been developed to try to identify those pregnancies at "high risk." These pregnancies are then candidates for further diagnostic testing.
What is the difference between a screening test and a diagnostic test? In diagnostic tests, a positive result very likely means the patient has the disease or condition of concern. In screening tests, the goal is to estimate the risk of the patient having the disease or condition. Diagnostic tests tend to be more expensive and require an elaborate procedure; screening tests are quick and easy to do. However, screening tests have more chances of being wrong: there are "false-positives" (test states the patient has the condition when the patient really doesn't) and "false-negatives" (patient has the condition but the test states he/she doesn't).
Maternal Serum Screening
The mother's blood is checked for three items: alpha-fetoprotein (AFP), unconjugated estriol (uE3) and human chorionic gonadotropin (hCG). These three are independent measurements, and when taken along with the maternal age (discussed below), can calculate the risk of having a baby with Down syndrome.
Alpha-fetoprotein is made in the part of the womb called the yolk sac and in the fetal liver, and some amount of AFP gets into the mother's blood. In neural tube defects, the skin of the fetus is not intact and so larger amounts of AFP is measured in the mother's blood. In Down syndrome, the AFP is decreased in the mother's blood, presumably because the yolk sac and fetus are smaller than usual.
Estriol is a hormone produced by the placenta, using ingredients made by the fetal liver and adrenal gland. Estriol is decreased in the Down syndrome pregnancy. This test may not be included in all screens, depending on the laboratory.
Human chorionic gonadotropin hormone is produced by the placenta, and is used to test for the presence of pregnancy. A specific smaller part of the hormone, called the beta subunit, is increased in Down syndrome pregnancies.
A very important consideration in the screening test is the age of the fetus (gestational age). The correct analysis of the different components depends on knowing the gestational age precisely. The best way to determine that is by ultrasound.
Once the blood test results are determined, a risk factor is calculated based on the "normal" blood tests for the testing laboratory. The average of normals is called the "population median." Test results are sometimes reported to doctors as "Multiples of the Median (MoM)." The "average" value is therefore called 1.0 MoM. Down syndrome pregnancies have lower levels of AFP and estriol, so their levels would be below the average, and therefore less than 1.0 MoM. Likewise, hCG in a Down syndrome pregnancy would be greater than 1.0 MoM. In the serum screening, the lab reports all results in either this way or as a total risk factor calculated by a software program.
Effects of Maternal Age
Finally, the calculated risk is used to modify the risk already statistically calculated based on the mother's age. We already know that as the mother's age advances, the risk of having a baby with Down syndrome increases. (Click here to see a table of these risk values.)
The cut-off for high-risk versus low-risk has been set by the geneticists at 1 in 250; less then that is high-risk, and higher than that is low-risk. The reason for choosing 1 in 250 for the cut-off has to do with the risk of miscarriage from amniocentesis: if the risk is 1 in 250 or less, the risk of having a baby with Down syndrome is greater than the risk of having a miscarriage from the amniocentesis; and more than 1 in 250, the risk of having a miscarriage from amniocentesis is greater than the risk of having a baby with Down syndrome.
For example: Let's say the test results come back in the typical range for a pregnancy not associated with Down syndrome (that would be 1.0 MoM for all components). This result reduces the woman's risk of having a child with Down syndrome four-fold. (This four-fold number is based on clinical studies, and is standard.) If the woman is 25, this decreases her risk from 1 in 1100 to 1 in 4400. If the woman is 35 years old, this decreases her risk from 1 in 250 to 1 in 1000. If the woman is 45, it decreases her risk from 1 in 20 to 1 in 80. So the blood test changed the screen of the woman aged 35 from high-risk to low-risk. The screen of the woman aged 25 stayed low-risk, and the screen of the woman aged 45 stayed high-risk.
Now, let's take the example of the test results coming back with the levels normally associated with a pregnancy of a child with Down syndrome. This increases the risk by four-fold (again, this is a standard number). So the woman aged 25 has her screen go from 1 in 1100 to 1 in 275, which is still low-risk. The woman aged 35 goes from 1 in 250 to 1 in 62, which are both high-risk. The woman aged 45 goes from 1 in 20 to 1 in 5; and so stays high-risk also.
So, the age of the mother is the most important aspect when determining the blood screening test's result.
Also note that the way the tests are set up, the serum screening test has a 5 to 8% false-positive rate (see above for the discussion of what this means) and also has a false-negative rate of 35 to 40%, and so will only detect about 60 to 65% of all fetuses with Down syndrome.
At the present time, the screening is done at the beginning of the second trimester. However, research is ongoing to find some combination of serum markers (or even from maternal urine) that may help make screening possible in the first trimester. These new markers include serum pregnancy-associated plasma protein A (PAPP-A), serum inhibin A, and urinary metabolites of hCG. However, first-trimester screening can't pick up neural tube defects, so if first trimester screening becomes routine for Down syndrome, pregnant women would then have to have two screening tests.
Ultrasound Screening
The main usefulness of ultrasound (also called sonography) is to confirm the gestational age of the fetus (it's more accurate than dating from the mother's last menstrual cycle). Another benefit of the ultrasound can also pick up problems of a serious medical nature, such as blockage of the small intestine or heart defects. Knowing these defects exist as early as possible will benefit the treatment of the child after birth.
There are several items that can be found during an ultrasound exam that some researchers have felt that may have a significant association with Down syndrome. These findings may be seen in normal fetuses, but some obstetricians believe that their presence increases the risk of the fetus having Down syndrome or other chromosomal abnormality. These "markers" include choroid plexus cyst, echogenic bowel, echogenic intracardiac focus, and dilitation of the kidneys (pyelctasis). However, these markers as a sign of Down syndrome are still controversial, and parents-to-be should keep in mind that each marker can also be found in a small percentage of normal fetuses. These ultrasound markers are best used in women over 35 or those who have a positive blood screening test, to either downgrade the risk (in cases where no such findings are seen in the ultrasound exam) or confirm that the pregnancy is high-risk for Down syndrome. In women under 35 years of age with normal maternal serum screen test results, the identification of one of these findings on the ultrasound is not significant enough to make a pregnancy high-risk for Down syndrome.
Many researchers have attempted to find if any combination of ultrasound findings and maternal blood or urine tests may be more likely to determine if a fetus has Down syndrome. The most common ultrasound marker used for identifying Down syndrome is the nuchal translucency marker. In a total of 22 studies involving pregnant women at high risk for having babies with chromosomal abnormalities, 30% of fetuses with increased nuchal translucency were found to have chromosomal abnormalities, and almost half of those abnormalities were Down syndrome. However, there are grave problems with the methodologies used and statistical analyses made in these studies. One recent review of the topic (Stewart & Malone, 1999) concluded:
"Results of nuchal translucency sonography are not yet sufficiently uniform to allow counseling of patients on the risk of aneuploidy [chromosomal abnormalities] based on a particular nuchal translucency thickness."
It is important to keep in mind that even the best combination of ultrasound findings and other variables is only predictive and not diagnostic. For true diagnosis, the chromosomes of the fetus must be examined.
Amniocentesis
This procedure is used to collect amniotic fluid, the liquid that is in the womb. It's performed in the doctor's office or in the hospital on an "out-patient" basis. A needle is inserted through the mother's abdominal wall into the uterus, using ultrasound to guide the needle. Approximately one ounce of fluid is taken for testing. This fluid contains fetal cells that can be examined for chromosome tests. It takes about 2 weeks to determine if the fetus has Down syndrome or not.
Amniocentesis is usually carried out between the 14th and 18th week of pregnancy; some doctors may do them as early as the 13th week. Side effects to the mother include cramping, bleeding, infection and leaking of amniotic fluid afterwards. There is a slight increase in the risk of miscarriage: the normal rate of miscarriage at this time of pregnancy is 2 to 3%, and amniocentesis increases that risk by an additional 1/2 to 1%.
Which mothers should have an amniocentesis? The current recommendations by professional obstetric groups is that women with a risk of having a child with Down syndrome of 1 in 250 or greater should be offered amniocentesis. There is controversy over whether to use the risk at the time of screening or the predicted risk at the time of birth. (The risk at the time of screening is higher since many fetuses with Down syndrome abort spontaneously around the time of screening or afterwards. See the risk table.)
Chorionic Villus Sampling (CVS)
In this procedure, instead of amniotic fluid being taken, a small amount of tissue is taken from the young placenta (also called the chorionic layer). These cells contain the fetal chromosomes that can be tested for Down syndrome. The cells can be collected the same way as the amniocentesis, but another method is to insert a tube into the uterus through the vagina. The method depends on the mother's anatomy.
CVS is usually carried out between the 10th and 12th weeks of pregnancy. Side effects to the mother are the same as with amniocentesis (above). The risk of miscarriage after CVS is slightly higher than with amniocentesis, increasing the normal risk of miscarriage to 3 to 5%. Studies have shown that the more experienced the doctor performing the CVS, the less the miscarriage rate. Early on in the use of CVS, a number of babies were identified with missing or shortened fingers or toes. However, that has been connected to the use of CVS before the 10th week of pregnancy.
Which mothers should have CVS? The same recommendations for amniocentesis apply to CVS. The decision as to use amniocentesis versus CVS is an individual one, and should be discussed thoroughly between the mother and her physician.
Want to know more about how Down syndrome occurs? Go to my article about trisomy 21.
References:
Chard T & Macintosh MCM. Screening for Down's syndrome. J. Perinat. Med. 23: 421-436, 1995.
Saller DN & Canick, JA. Maternal serum screening for fetal Down syndrome: clinical aspects. Clin. Obstet. Gynecol. 39(4): 783-792, 1996.
Benacerraf BR. The second-trimester fetus with Down syndrome: detection using sonographic features. Ultrasound Obstet. Gynecol. 7: 147-155, 1996.
Haddow JE et. al. Screening of maternal serum for fetal Down's syndrome in the first trimester. NEJM 338(14): 955-961, 1998.
Powell KJ & Grudzinskas JG. Screening for Down syndrome in the first trimester. Reprod. Fertil. Dev. 7: 1413-1417, 1995.
Rotmensch S et. al. Prenatal sonograph findings in 187 fetuses with Down syndrome. Prenat. Diagn., 17(11): 1001-1009, 1997.
Stewart Tl & Malone FD. First trimester screening for aneuploidy: nuchal translucency sonography. Semin Perinatol 23(5): 36-381, 1999.
Filly RA. Obstetrical sonography: The best way to terrify a pregnant woman. J Ultrasound Med 19:1-5, 2000.
copyright 1998-2000, All rights reserved
Permission to reproduce this article has been granted by Dr. Len Leshin, MD, FAAP. For further information regarding Down’s Syndrome visit Dr. Leshin’s website located at: http://www.ds-health.com/
Monday, July 16, 2007
Measurements for Down Syndrome
Earlier parameters used included the actual to expected FL ratio, the BPD/FL ratio. More recently the nuchal translucency thickness is used in detecting Down syndrome fetuses.
In Down syndrome both the femur and the humerus tend to be shortened.
The expected FL = -9.645 + 0.9338 x BPD
If the ratio is below 0.84 the likelihood of Down syndrome is higher.
The BPD/FL ratio should be established for each individual population, and it’s value varies with gestation. The mean +1.5 SD is usually used as the cutoff level.
_____________________________
GA (weeks) --- BPD/FL ratio#
15 --------------------- 1.93
16 --------------------- 1.93
17 --------------------- 1.76
18 --------------------- 1.74
19 --------------------- 1.69
20 --------------------- 1.58
21 --------------------- 1.54
22 --------------------- 1.47
______________________________
Positive predictive value 1/294 for the general population ( normally 1/1000 )
and 1/112 for maternal age over 35 (normally 1/270).
The BPD/FL ratio and the nuchal skin fold thickness can be used in conjunction with the maternal age incidence to arrive at a new probability for the occurrence of Down syndrome in a particular fetus.
The nuchal translucency thickness is the thickness of the skin fold behind the nape of the neck. In chromosomal abnormalities this may be thickened due to venous or lymphatic engorgement. In the measurement of the nuchal skin fold thickness, critical landmarks should include the cavum septum pellucidum, the cerebral peduncles and the cerebellar hemispheres. Calipers are placed from the outer skull table to the outer skin surface.
Percentage of Down syndrome fetuses with nuchal fold >6 mm after 16 weeks vary from 69% (Benacerraf 1991) to as low as 3.8% (Grandjean 1995) in different reports. A mean value of about 50% can be obtained from different reports.
The Percentage of Down syndrome with Nuchal folds equal or greater than 3mm before 14 weeks ranges from 1.5% (Rodeck 1995) to 18% (Nicolaides 1994) and 45% (Salvesen 1995) in different reports
The Nicolaides group, basing on their findings in 1015 fetuses at 10-13 weeks with nuchal fold greater than 3mm arrived at the following risks estimates:
3mm ------ 3 times
4mm ------ 18 times
5mm ------ 28 times
6mm ------ 36 times
the incidence by maternal age.
The incidence of Down syndrome at the age of 35 is around 1 out of 270. If the fetus has a nuchal skin fold of 6mm the risk of Down syndrome would have become 270/36 or 1 out of 7.5.
In general the combination of beta-HCG and nuchal translucency thickness can increase the detection rate of Down syndrome fetuses by almost 3 folds compared to maternal age alone.
Estimated risks of fetal trisomies at 10-14 weeks gestation on the basis of maternal age (background) alone and age plus nuchal fold thickness of 3mm, 4mm and >4mm. (Pandya et al 1995).
Other markers which may be present in Down syndrome include Cardiac defects, cardiac echogenicities, tricuspid regurgitation, cystic hygroma, duodenal atresia, omphalocele, polyhydramnios, choroid plexus cyst, renal calyceal dilation, and echogenic bowels.
More recently the failure to visualize the fetal nasal bone at around 11-13 weeks is considered as a very reliable marker for Down Syndrome.
Read also: 1. Diagnosing Down Syndrome.
2. Soft Markers - A Guide for Professionals.
3. Ultrasonographic "soft markers" of fetal chromosomal defects.
Back to Obstetric Ultrasound page
In Down syndrome both the femur and the humerus tend to be shortened.
The expected FL = -9.645 + 0.9338 x BPD
If the ratio is below 0.84 the likelihood of Down syndrome is higher.
The BPD/FL ratio should be established for each individual population, and it’s value varies with gestation. The mean +1.5 SD is usually used as the cutoff level.
_____________________________
GA (weeks) --- BPD/FL ratio#
15 --------------------- 1.93
16 --------------------- 1.93
17 --------------------- 1.76
18 --------------------- 1.74
19 --------------------- 1.69
20 --------------------- 1.58
21 --------------------- 1.54
22 --------------------- 1.47
______________________________
Positive predictive value 1/294 for the general population ( normally 1/1000 )
and 1/112 for maternal age over 35 (normally 1/270).
The BPD/FL ratio and the nuchal skin fold thickness can be used in conjunction with the maternal age incidence to arrive at a new probability for the occurrence of Down syndrome in a particular fetus.
The nuchal translucency thickness is the thickness of the skin fold behind the nape of the neck. In chromosomal abnormalities this may be thickened due to venous or lymphatic engorgement. In the measurement of the nuchal skin fold thickness, critical landmarks should include the cavum septum pellucidum, the cerebral peduncles and the cerebellar hemispheres. Calipers are placed from the outer skull table to the outer skin surface.
Percentage of Down syndrome fetuses with nuchal fold >6 mm after 16 weeks vary from 69% (Benacerraf 1991) to as low as 3.8% (Grandjean 1995) in different reports. A mean value of about 50% can be obtained from different reports.
The Percentage of Down syndrome with Nuchal folds equal or greater than 3mm before 14 weeks ranges from 1.5% (Rodeck 1995) to 18% (Nicolaides 1994) and 45% (Salvesen 1995) in different reports
The Nicolaides group, basing on their findings in 1015 fetuses at 10-13 weeks with nuchal fold greater than 3mm arrived at the following risks estimates:
3mm ------ 3 times
4mm ------ 18 times
5mm ------ 28 times
6mm ------ 36 times
the incidence by maternal age.
The incidence of Down syndrome at the age of 35 is around 1 out of 270. If the fetus has a nuchal skin fold of 6mm the risk of Down syndrome would have become 270/36 or 1 out of 7.5.
In general the combination of beta-HCG and nuchal translucency thickness can increase the detection rate of Down syndrome fetuses by almost 3 folds compared to maternal age alone.
Estimated risks of fetal trisomies at 10-14 weeks gestation on the basis of maternal age (background) alone and age plus nuchal fold thickness of 3mm, 4mm and >4mm. (Pandya et al 1995).
Other markers which may be present in Down syndrome include Cardiac defects, cardiac echogenicities, tricuspid regurgitation, cystic hygroma, duodenal atresia, omphalocele, polyhydramnios, choroid plexus cyst, renal calyceal dilation, and echogenic bowels.
More recently the failure to visualize the fetal nasal bone at around 11-13 weeks is considered as a very reliable marker for Down Syndrome.
Read also: 1. Diagnosing Down Syndrome.
2. Soft Markers - A Guide for Professionals.
3. Ultrasonographic "soft markers" of fetal chromosomal defects.
Back to Obstetric Ultrasound page
唐氏综合征妊娠早期及中期筛查的进展
杭爱国 陈晓残
唐氏综合征是最常见的染色体异常性疾病,占受孕人数的1%,每 700个出生婴儿中就有1个唐氏综合征患儿。大多数在早期发生自然流产。唐氏综合征胎儿通常生长迟缓,有严重的头、面、心脏和肢体畸形。所有唐氏综合征患儿都有精神异常,还可伴有消化道和肌肉、骨骼畸形。因为目前唐氏综合征还无法治疗,故只有进行早期诊断,终止妊娠,才能达到优生的目的。目前已开展的羊水穿刺及绒毛活检仅限于高危人群,并仅能检出20%的唐氏综合征胎儿。此外,绒毛活检及羊水穿刺均为侵入性检查,分别可引起胎儿羊膜束带综合征、截肢损伤等并发症,且有1%~2%的流产率。所以,近年来许多学者致力于早期(8~14孕周)母体血清标记物的筛查及胎儿的超声波检查的研究,现将有关的研究进展综述如下。
一、妊娠早期母体血清标记物筛查
1.甲胎蛋白(alpha-fetoprotein,AFP):AFP是胎儿血清中最常见的球蛋白,其结构和功能类似于白蛋白。早孕期由卵黄囊产生,晚孕期胎儿肝脏大量产生。胎儿上皮完整时,少量的AFP从胎儿泌尿道排入羊水中。非孕妇的血清中可以发现很少量的AFP。孕妇血清中的AFP在早、中孕期逐渐增加,大约在孕28~32周时达到相对稳定期。当胎儿出现开放性神经管缺陷或腹壁缺陷时,羊水和母体血清中的AFP显著升高。
由于各个实验室报告的数值不同,所以,所有实验室均以正常人群中位数的倍数(multiple of the unaffected population median, MoM)作为检验结果的标准。正常人群为1.0 MoM。
母体血清AFP筛查最初用于开放性神经管缺陷的诊断。大多数有开放性神经管缺陷胎儿的母体血清AFP高于2.0 MoM。如AFP轻度升高(2.0~3.0 MoM)时重复血清测定有意义。如第二次AFP在1.0~2.0 MoM之间,提示胎儿可能正常。而唐氏综合征的母体AFP低于1.0 MoM[1]。Aitken等[2]报道结果为0.65 MoM并多在0.47~0.86 MoM之间。一般来讲,AFP需同时结合其它检查,对筛查唐氏综合征才有意义[3,4]。
2.游离雌三醇(uE3):雌三醇是由经胎儿肾上腺和肝脏最后由胎盘合成的一种甾体类激素。它以游离形式直接由胎盘分泌进入母体循环。在母体肝脏内很快地以硫酸盐和葡萄糖苷酸雌三醇的形式代谢。母体血清中uE3水平随着孕周的增长而增加。唐氏综合征胎儿的母体血清uE3偏低,推测可能与胎儿生长迟缓有关。
3.绒毛膜促性腺激素(hCG):hCG是妇产科医生们所熟悉最常使用的妊娠试验激素。它是由α和β二聚体的糖蛋白组成。α亚单位为垂体前叶激素所共有。β亚单位是hCG所特异的。完整的hCG全部是由胎盘绒毛膜的合体滋养层产生。现认为是由滋养层过渡型细胞和合体细胞产生的。在妊娠的前8周增加很快,以维持妊娠。在大约8周以后,hCG逐渐下降,直到大约20周达到相对稳定。孕妇血清中的hCG主要以完整形式存在,游离β-hCG占总hCG的1% ~8%。唐氏综合征时母体血清hCG升高,约为2.11 MoM。有报道唐氏综合征在孕8~14周时总hCG、游离α-hCG和游离β-hCG,分别为1.23、0.86和1.79MoM。Jauniaux[5]在对58 862例单胎早期妊娠进行筛查,13例Dovn综合征中有11例(84.6%)的总hCG>2.5 MoM。Noble[6]对76 例唐氏综合征胎儿及800例正常胎儿,在孕10~14周时测定母体血清游离β-hCG浓度,发现唐氏综合征胎儿的母体血清游离β-hCG浓度显著高于正常 (P<0.0001),敏感性为28.9%,假阳性率为5%。唐氏综合征胎儿的母体血清hCG升高的原因还不很清楚。
孕妇的年龄可以影响筛查的阳性率和估计检出率。在正常的人群中AFP为1.0 MoM,uE3为1.0 MoM,hCG为1.0 MoM。在正常人群中,孕妇发生唐氏综合征的危险性为1/1 200,在25岁人群中可使危险性从通常的1/1 200降至1/4 800;35岁者从1/270降至1/1 080;45岁者从1/20降至1/80。
唐氏综合征时AFP为0.74 MoM,uE3为0.71 MoM,hCG为2.11 MoM。这个数值表示与孕妇年龄相关的发生唐氏综合征的危险性增加了4倍。25岁的人群中危险性从通常发生率1/1 200增至1/300;35岁者从1/270增至1/72;45岁者从1/20增至1/5。
在25岁人群中,筛查的阳性率为3.5%,检出率为46%;35岁人群,筛查的阳性率为13.5%,检出率为73%;45岁人群,筛查的阳性率为55%,检出率为98%。
4.妊娠相关血浆蛋白A(pregnancy-associated plasma protein A,PAPP-A):PAPP-A是一个大分子蛋白复合物,产生于胎盘。
Zimmermann等[3]对孕妇年龄25~44岁的1 151例在孕10~13周进行研究时发现,21和18三体胎儿的母体血清PAPP-A水平低于正常,分别为0.51和0.08MoM。提示PAPP-A可作为一个独立的血清标记物。Wald等[4]在9个国家21个产科中心对孕8~14周的孕妇进行AFP、uE3、总hCG、游离α-hCG、游离β-hCG、PAPP-A和抑制素A 7个血清标记物筛查中,共检出77例唐氏综合征胎儿。发现患病组的PAPP-A在孕8~14周时是低的,孕8~9周为0.36 MoM;孕10周为0.44 MoM;孕11周为0.33 MoM;孕12~14周为0.59 MoM。表明PAPP-A随着妊娠的持续也有增高的趋势。Wald认为PAPP-A和游离β-hCG是最能区别唐氏综合征与正常胎儿的血清标记物。49% 的唐氏综合征胎儿母体血清PAPP-A低于第5百分位数。
使用PAPP-A、游离β-hCG结合孕妇年龄在孕8~14周时唐氏综合征的检出率为62%,假阳性率为5%;而孕15~22周时检出率为59%[7]。
5.抑制素-A(inhibin-A):抑制素是一个异二聚体的糖蛋白。β-亚单位与一个βA-亚单位组成抑制素-A;与βB- 亚单位组成抑制素-B。血液中以无生物活性的游离亚单位存在。妊娠时母体血清中的大量抑制素被认为来源于胎盘的合体滋养层。早孕时母体血清中不能检出抑制素-B,抑制素-A在孕10~12周时增加并达到高峰,在妊娠中期下降成一个平台,但到妊娠晚期时再一次升高,足月时达最高水平。
抑制素-A同hCG一样在并发唐氏综合征时升高。抑制素在母体的血清浓度不依赖于hCG的浓度而变化。
Noble等[6]发现在12.8%的唐氏综合征胎儿母体血清中的抑制素-A>95百分位数。而Wald等[4]测定了77例唐氏综合征胎儿早孕时母体血清的抑制素-A为1.19 MoM,认为对诊断唐氏综合征也有所帮助。
二、妊娠早期超声检查
超声检查在唐氏综合征筛查中占有重要地位。其主要作用有:(1)各种血清筛查是以孕龄为基础,AFP、uE3、hCG 和抑制素-A均随孕龄的增加而变化,故必须用超声来确认孕龄。(2)由于唐氏综合征胎儿往往伴有宫内生长迟缓和畸形,超声检查可直接发现这些异常。(3) 唐氏综合征还有一些特殊的表现,如张力减退,粗短颈和近端肢体骨短小。研究认为某些异常可早在孕8~14周时发现,现分述如下。
1.颈部半透明厚度(nuchal translucency,NT):在中孕及晚孕期,胎儿颈部水囊状淋巴管瘤(nuchal cystic hygromas)或颈部水肿与染色体异常有密切关系。Cullen等[8]报道了145例颈部水肿胎儿中有52例(36%)有染色体异常,其中三体综合征占43例。而44例水囊状淋巴管瘤中33例(75%)有染色体异常。因而,有必要在孕早期检测有否颈部水肿作为染色体异常的标记。以5MHz探头于腹部作探测,先找到胎头的矢状切面,测胎儿头臀长度以及颈椎部位皮肤与颈椎软组织间的最大透亮厚度,此为NT。探测时切勿将羊膜误作为胎儿皮肤。
Nicolaides等[9]对孕10~14周的孕妇进行了827次胎儿NT测定,其中51例胎儿NT厚度为3~8mm,其中18例(35%)为染色体异常,均为三体征,都发生在35岁以上;而776例胎儿NT厚度为0~2mm者,有10例(1%)为染色体异常,其中4例为三体,6例为47,XXY、47,XXX及嵌合型者。
至中孕期时,胎儿NT可发展为两方面:(1)水囊状淋巴管瘤,往往为Turner综合征的体征,是由于颈部淋巴管囊过度膨胀所致。(2)水肿胎儿的早期症状。水肿胎儿发病原因是多方面的,三体占了多数,其余为胎儿心血管、肺部畸形、骨骼发育不全、宫内感染或其它代谢及血液、器官功能紊乱等。
目前,在临床上不再用颈部水肿或水囊状淋巴管瘤这些名称,而用NT(颈部透明度)来表示观察结果。在染色体正常组中,大部分增厚的NT在孕20周时会自然消失。
孕10~14周时,>80%的三体胎儿的颈部半透明厚度增加[10]。Zimmermann[3]等对孕妇年龄25~44岁,孕10~13周的1 151例进行超声筛查,在23例染色体异常胎儿中有9例NT>3 mm。Jauniaux等[5]发现,66.7%的病例NT超过95百分位数。Martinez等[11]对553例孕10~13周孕妇筛查,以NT≥3 mm作为分界线,534例正常胎儿中有19例NT≥3mm,19例染色体异常胎儿中11例NT>3mm,检出率为57.8%,特异性为96.4%。以3mm为分界线,21、18、13三体的检出率高达80%,假阳性4%~5%[10]。
2.胎儿头臀长度(CRL):唐氏综合征的宫内生长迟缓可有两种不同的表型,取决于多余的染色体从双亲的来源。如来源于父方,则生长良好,胎头大小比例正常。而来源于母方,就会出现严重不对称的生长迟缓。Jauniaux等[5]报道,孕早期62.5%(10/16)的唐氏综合征胎儿的CRL低于第5百分位数。提示,CRL可作为唐氏综合征孕早期筛查项目之一。
3.脐动脉搏动指数(umbilical artery pulsatility index,UAPI):Martinez等[11]还发现,在534例染色体正常的胎儿孕10~13周时有26例UAPI超过第95百分位数;19例染色体异常胎儿中有11例UAPI超过第95百分位数;检出率为57.8%,特异性为95.1%。脐动脉血流检测间接地提供了一个可靠的胎儿胎盘循环灌注状况方法。这个研究提示,UAPI可作为早期唐氏综合征筛查的一个指标。染色体异常时UAPI升高的原因还不清楚。可能与胎盘形成不足和滋养叶表面剥离有关。染色体异常的胎儿常常有早期功能改变和形态发育异常,主要出现在高流产率及早期宫内生长迟缓的胎儿。
4.胎心率:Jauniaux等[5]还发现,在13例21三体染色体异常胎儿中有4例早期(孕10~14周)胎心率低于第5百分位数(30.8%)。而Jauniaux等[12]在1996年的报道中发现21三体胎儿的平均心率明显高于正常胎儿。胎心率增加的原因可能与心脏发育延迟及心脏畸形有关。心动过缓可能与胎儿发育不良及胎儿死亡的先兆有关。
三、早期多项目综合筛查
由于单独血清学筛查或超声检查唐氏综合征检出的阳性率低,综合血清学及超声检查可提高检出率,降低假阳性率。选择筛查项目必须符合下列3点:(1)所选择筛查项目必须是疾病比较常见的和显著的标记;(2)必须是既快捷又便宜和低的假阳性率(通常≤5%);(3)阳性结果必须有利于诊断试验及随访[1]。下面介绍几种早期妊娠多项目综合筛查及结果。
1.PAPP-A+游离β-hCG:孕10~13周时测定PAPP-A及游离β-hCG,唐氏综合征的检出率大约为65%,假阳性率为5%[1]。
2.NT+PAPP-A:孕10~13周NT≥3 mm和低PAPP-A水平的染色体异常检出率为39%,假阳性率为2%,游离β-hCG和AFP可以协助诊断。
3.抑制素-A+游离β-hCG:抑制素-A结合游离β-hCG染色体异常的检出率为30.3%,假阳性率为5%[6]。
4.CRL+NT+胎盘部分水泡状变性:超声检查CRL、NT及部分水泡状胎盘,染色体异常的检出率为88.9%(16/18),84.6%染色体异常者β-hCG高于正常(11/13)[5]。水泡状胎盘主要为三倍体及性染色体异常性疾病的表现。
5.UAPI+NT:UAPI结合NT,染色体异常的检出率为84.2%,假阳性率为6.6%,阳性预测值31.3%,阴性预测值99.4%[11]。
四、中期妊娠的非侵入性筛查
早期遗漏筛查者、早期筛查可疑者或阳性者,需要在中期妊娠继续筛查。由于唐氏综合征有多发性畸形及特殊的表型,结构的异常在中期妊娠逐渐明显,超声检查在早期更易检出畸形;而且,一旦检出畸形可行中期妊娠引产,以减少畸形儿的出生。早、中孕期连续筛查可提高检出率。本文所指的中期妊娠是指孕14~22 周。
1.母体三项血清标记物的检测:母体血清中的AFP、uE3及β-hCG在孕中期的检测意义同孕早期一样,唐氏综合征者仍表现为低AFP、低uE3及高β-hCG[13],故孕中期对这三项血清标记物的检测在筛查唐氏综合征中仍有一定意义。
2.孕妇尿游离β-hCG的测定:测定孕妇尿中的游离β-hCG比测定血清hCG更容易方便,但易受尿量的影响。为了减少误差,Hayashi等[14]测定了孕14~19周孕妇尿游离β-hCG与肌酐比值,发现3例唐氏综合征胎儿母体尿游离β-hCG与肌酐比值≥2.0,检出率为100%。
3.胎儿结构异常的检查:唐氏综合征胎儿颈部厚度(>5mm)、水囊状淋巴管瘤、脑室扩张(≥10mm)、肾盂扩张(>3mm)及肠回声均可通过超声检查发现。研究证明,如超声检查发现上述某一种异常,再加上三项血清标记阳性,染色体异常的危险性增加5.6倍。反之,超声检查正常,即使三项血清标记阳性,染色体异常的危险性则减少56%。
4.胎耳长度测量:在采用染色体核型分析以前,往往根据新生儿体型畸形来诊断唐氏综合征,包括偏平脸、低张、颈部增厚、身材矮短、第5手指中节缺如、通贯手及外耳发育不良。其中外耳测量是最为可靠的体征。因为胎耳较小,并不是IUGR之故,而是为胎耳本身发育不良所致。目前在推广非侵入性唐氏综合征筛查时,超声测量胎耳长度值得推荐。
Awwad等[15]于1994年认为超声测胎耳长度为唐氏综合征主要的超声标记之一。对孕20~28周中期妊娠孕妇418例应用Aloka SSD—650超声仪测到胎耳纵长。418例中10例有染色体异常(4例21三体、6例18三体),其余408例均为正常染色体胎儿。根据正常408例胎耳长度与孕周的关系,得出直线回归方程式。
EEL(预计胎耳长)=-6.00+1.075GA(孕周)然后,将超声测得的胎耳长(MEL)与预计胎耳长(EEL)算出其比值,在唐氏综合征中其比值比正常胎儿为低,21三体为0.78(S=0.05,P<0.0001);18三体为0.76(S=0.11,P<0.001);而正常组为1.00(S=0.12)。因而,MEL/EEL比值以0.8为正常与异常的分界线,假阳性率为1.2%,21三体的灵敏度为75%,特异性为 98.8%;18三体的灵敏度为83.3%,特异性为98.8%。
5.股骨长度测量:部分唐氏综合征胎儿可表现为股骨过短。Nybery等[13]报道,在18例唐氏综合征胎儿中有4例股骨过短(22.2%)。
股骨长度测量是从骨干的最近端到末端,不包括股骨头及末端骨骺。
股骨过短的定义:测量值/预测值的股骨长度比值≤0.9[16]。
股骨长度的预测值=-0.966+0.866×双顶径(BPD)[16]。
股骨长度的预测值与双顶径有关,与孕龄无关。
6.股骨/足长度比值:足长的测量是从足后跟到大趾顶端。
Grandjean等[17]发现,孕14~24周超声测量股骨/足长度比值能提高检出率。取临界值为0.88,敏感性为35%,假阳性为4.6%;如果临界值为0.85,敏感性为15%,假阳性为2.3%。
7.BPD/股骨长度比值:如PBD/股骨长度比值≥1.80,敏感性为40%,特异性为97.8%,假阳性率为2.2%[18]。
8.(股骨+肱骨长度)/足长度比值:
肱骨测量是从骨干的最近端到末端。
Johnson等[19]在研究中发现,一些唐氏综合征胎儿股骨短,另一些胎儿肱骨短,但很少有二者都短的病例。他们用超声筛查814例孕妇,其中36例唐氏综合征(股骨+肱骨长度)/足长度比值≤1.75,OR 15.3,检出率为53%,特异性为93%,阳性预测值0.32,阴性预测值0.97,假阳性率为6.9%。
35岁孕妇经过孕早期、中期的连续筛查,如阴性其唐氏综合征的危险性<1/270,不需进一步检查;如阳性,危险性>1/270,以超声确定胎龄。如胎龄正确(与末次月经误差<10天),应提供遗传咨询,行羊水穿刺,作染色体检查。如胎龄不正确(与末次月经误差≥10天),在孕16 周时重复筛查。总之,通过孕早、中期的血清标记物及超声筛查,结合孕妇年龄、家族史、生育史及超声核实胎龄,筛查出阳性病例后,才能进行侵入性检查,作核型分析来确诊。
参考文献
1 Saller DN. Maternal Serum screening for fetal Down syndrome: clinical aspects. Clin Obstet Gynecol, 1996,39:783-793.
2 Aitken DA, Mclaw G, Crossley JA, et al. Firsttrimester biochemical screening for fetal chromosome abnormalities and neural tube defects. Prenat Diagn, 1993,13:681-689.
3 Zimmermann R, Hucha A, Savoldelli G, et al. Serum parameters and nuchal translucency in first trimester screening for fetal chromosoma abnormalities. Br J Obstet Gynecol, 1996,103:1009-1014.
4 Wald NJ, George L, Smith D, et al. Serum screening for Down's syndrome between 8 and 14 weeks of pregnancy. Br J Obstet Gynaecol, 1996,103:407-412.
5 Jauniaux E, Brown R, Snijders RJM, et al. Early prenatal diagnosis of triploidy. Am J Obstet Gynecol, 1997,176:550-554.
6 Noble PL, Wallace EM, Snijders RJM, et al. Maternal serum inhibin-A and free β-hCG concentrations in trisomy 21 pregnancies at 10 to 14 weeks of gestation. Br J Obstet Gynecol, 1997,104:367-371.
7 Wald NJ, Densem JW, Smith D, et al. Four-marker serum screening for Down's syndrome. Prenate Diagn, 1994,14:707-716.
8 Cullen MT, Gabrielli S, Green JJ, et al. Diagnosis and significance of cystic hygroma in the first trimester. Prenate Diagn, 1990,10:643-651.
9 Nicolaides KH, Azar G, Byrne D, et al. Fetal nuchal translucency: ultrasound screening for chromosomal defects in first trimester of pregnancy. BMJ, 1992,304(April 4):867-869.
10 Nicolaides KH, Brizot ML, Snijders RJM. Fetal nuchal translucency: ultrasound screening for fetal trisomy in the first trimester of pregnancy. Br J Obstet Gynaecol, 1994,101:782-786.
11 Martinez JM, Borrell A, Antolin E, et al. Combining nuchal translucency with umbilical Doppler velocimetry for detecting fetal trisomies in the first trimester of pregnancy. Br J Obstet Gynaecol, 1997,104:11-14.
12 Jauniaux E, Gavriil P, Khun P, et al. Fetal heart rate and unbilicoplacental Doppler flow velocity waveforms in early pregnancies with a chromosomal abnormality and/or increased nuchal translucency thickness. Hum Reprod, 1996,11:435-439.
13 Nybery DA, Luthy DA, Cheng EY, et al. Role of prenatal ultrasonography in women with positive screen for Down syndrome on the basis of maternal serum markers. Am J Obstet Gynecol, 1995,173:1030-1035.
14 Hayashi M, Kozu H, Takei H. Maternal urinary free β-subunit of human chorionic gonadotrophin: creatinine ratios and fetal chromosomal abnormalities in the second trimester of pregnancy. Br J Obstet Gynecol, 1996,103:577-580.
15 Awwad JT, Azar GB, Karam KS, et al. Ear length: a potential sonographic marker for Down syndrome. Int J Gynecol Obstet, 1994,44:233-238.
16 Nyberg DA, Resta RG, Hickok DE, et al. Femur length shortening in the detection of Down syndrome: is prenatal screening feasible? Am J Obstet Gynecol, 1990,162:1247-1252.
17 Grandjean H, Sarranon MF. Femur/foot length ratio for detection of Down syndrome: results of a multicenter prospective study. Am J Obstet Gynecol, 1995,173:16-19.
18 Brumfield CG, Hauth JC, Cloud GA, et al. Sonographic measuements and ratios in fetuses with Down's syndrome. Obstet Gynecol, 1989,73:644-646.
19 Johnson MP, Michaelson JE, Barr M, et al. Combining humerus and femur length for improved ultrasonographic identification of pregnancies at increased risk for trisomy 21. Am J Obstet Gynecol, 1995,172:1229-1235.
作者单位:200090 上海市杨浦区中心医院妇产科
(收稿:1997-08-19 修回:1997-12-29)
(本文编辑:侯存明)
唐氏综合征是最常见的染色体异常性疾病,占受孕人数的1%,每 700个出生婴儿中就有1个唐氏综合征患儿。大多数在早期发生自然流产。唐氏综合征胎儿通常生长迟缓,有严重的头、面、心脏和肢体畸形。所有唐氏综合征患儿都有精神异常,还可伴有消化道和肌肉、骨骼畸形。因为目前唐氏综合征还无法治疗,故只有进行早期诊断,终止妊娠,才能达到优生的目的。目前已开展的羊水穿刺及绒毛活检仅限于高危人群,并仅能检出20%的唐氏综合征胎儿。此外,绒毛活检及羊水穿刺均为侵入性检查,分别可引起胎儿羊膜束带综合征、截肢损伤等并发症,且有1%~2%的流产率。所以,近年来许多学者致力于早期(8~14孕周)母体血清标记物的筛查及胎儿的超声波检查的研究,现将有关的研究进展综述如下。
一、妊娠早期母体血清标记物筛查
1.甲胎蛋白(alpha-fetoprotein,AFP):AFP是胎儿血清中最常见的球蛋白,其结构和功能类似于白蛋白。早孕期由卵黄囊产生,晚孕期胎儿肝脏大量产生。胎儿上皮完整时,少量的AFP从胎儿泌尿道排入羊水中。非孕妇的血清中可以发现很少量的AFP。孕妇血清中的AFP在早、中孕期逐渐增加,大约在孕28~32周时达到相对稳定期。当胎儿出现开放性神经管缺陷或腹壁缺陷时,羊水和母体血清中的AFP显著升高。
由于各个实验室报告的数值不同,所以,所有实验室均以正常人群中位数的倍数(multiple of the unaffected population median, MoM)作为检验结果的标准。正常人群为1.0 MoM。
母体血清AFP筛查最初用于开放性神经管缺陷的诊断。大多数有开放性神经管缺陷胎儿的母体血清AFP高于2.0 MoM。如AFP轻度升高(2.0~3.0 MoM)时重复血清测定有意义。如第二次AFP在1.0~2.0 MoM之间,提示胎儿可能正常。而唐氏综合征的母体AFP低于1.0 MoM[1]。Aitken等[2]报道结果为0.65 MoM并多在0.47~0.86 MoM之间。一般来讲,AFP需同时结合其它检查,对筛查唐氏综合征才有意义[3,4]。
2.游离雌三醇(uE3):雌三醇是由经胎儿肾上腺和肝脏最后由胎盘合成的一种甾体类激素。它以游离形式直接由胎盘分泌进入母体循环。在母体肝脏内很快地以硫酸盐和葡萄糖苷酸雌三醇的形式代谢。母体血清中uE3水平随着孕周的增长而增加。唐氏综合征胎儿的母体血清uE3偏低,推测可能与胎儿生长迟缓有关。
3.绒毛膜促性腺激素(hCG):hCG是妇产科医生们所熟悉最常使用的妊娠试验激素。它是由α和β二聚体的糖蛋白组成。α亚单位为垂体前叶激素所共有。β亚单位是hCG所特异的。完整的hCG全部是由胎盘绒毛膜的合体滋养层产生。现认为是由滋养层过渡型细胞和合体细胞产生的。在妊娠的前8周增加很快,以维持妊娠。在大约8周以后,hCG逐渐下降,直到大约20周达到相对稳定。孕妇血清中的hCG主要以完整形式存在,游离β-hCG占总hCG的1% ~8%。唐氏综合征时母体血清hCG升高,约为2.11 MoM。有报道唐氏综合征在孕8~14周时总hCG、游离α-hCG和游离β-hCG,分别为1.23、0.86和1.79MoM。Jauniaux[5]在对58 862例单胎早期妊娠进行筛查,13例Dovn综合征中有11例(84.6%)的总hCG>2.5 MoM。Noble[6]对76 例唐氏综合征胎儿及800例正常胎儿,在孕10~14周时测定母体血清游离β-hCG浓度,发现唐氏综合征胎儿的母体血清游离β-hCG浓度显著高于正常 (P<0.0001),敏感性为28.9%,假阳性率为5%。唐氏综合征胎儿的母体血清hCG升高的原因还不很清楚。
孕妇的年龄可以影响筛查的阳性率和估计检出率。在正常的人群中AFP为1.0 MoM,uE3为1.0 MoM,hCG为1.0 MoM。在正常人群中,孕妇发生唐氏综合征的危险性为1/1 200,在25岁人群中可使危险性从通常的1/1 200降至1/4 800;35岁者从1/270降至1/1 080;45岁者从1/20降至1/80。
唐氏综合征时AFP为0.74 MoM,uE3为0.71 MoM,hCG为2.11 MoM。这个数值表示与孕妇年龄相关的发生唐氏综合征的危险性增加了4倍。25岁的人群中危险性从通常发生率1/1 200增至1/300;35岁者从1/270增至1/72;45岁者从1/20增至1/5。
在25岁人群中,筛查的阳性率为3.5%,检出率为46%;35岁人群,筛查的阳性率为13.5%,检出率为73%;45岁人群,筛查的阳性率为55%,检出率为98%。
4.妊娠相关血浆蛋白A(pregnancy-associated plasma protein A,PAPP-A):PAPP-A是一个大分子蛋白复合物,产生于胎盘。
Zimmermann等[3]对孕妇年龄25~44岁的1 151例在孕10~13周进行研究时发现,21和18三体胎儿的母体血清PAPP-A水平低于正常,分别为0.51和0.08MoM。提示PAPP-A可作为一个独立的血清标记物。Wald等[4]在9个国家21个产科中心对孕8~14周的孕妇进行AFP、uE3、总hCG、游离α-hCG、游离β-hCG、PAPP-A和抑制素A 7个血清标记物筛查中,共检出77例唐氏综合征胎儿。发现患病组的PAPP-A在孕8~14周时是低的,孕8~9周为0.36 MoM;孕10周为0.44 MoM;孕11周为0.33 MoM;孕12~14周为0.59 MoM。表明PAPP-A随着妊娠的持续也有增高的趋势。Wald认为PAPP-A和游离β-hCG是最能区别唐氏综合征与正常胎儿的血清标记物。49% 的唐氏综合征胎儿母体血清PAPP-A低于第5百分位数。
使用PAPP-A、游离β-hCG结合孕妇年龄在孕8~14周时唐氏综合征的检出率为62%,假阳性率为5%;而孕15~22周时检出率为59%[7]。
5.抑制素-A(inhibin-A):抑制素是一个异二聚体的糖蛋白。β-亚单位与一个βA-亚单位组成抑制素-A;与βB- 亚单位组成抑制素-B。血液中以无生物活性的游离亚单位存在。妊娠时母体血清中的大量抑制素被认为来源于胎盘的合体滋养层。早孕时母体血清中不能检出抑制素-B,抑制素-A在孕10~12周时增加并达到高峰,在妊娠中期下降成一个平台,但到妊娠晚期时再一次升高,足月时达最高水平。
抑制素-A同hCG一样在并发唐氏综合征时升高。抑制素在母体的血清浓度不依赖于hCG的浓度而变化。
Noble等[6]发现在12.8%的唐氏综合征胎儿母体血清中的抑制素-A>95百分位数。而Wald等[4]测定了77例唐氏综合征胎儿早孕时母体血清的抑制素-A为1.19 MoM,认为对诊断唐氏综合征也有所帮助。
二、妊娠早期超声检查
超声检查在唐氏综合征筛查中占有重要地位。其主要作用有:(1)各种血清筛查是以孕龄为基础,AFP、uE3、hCG 和抑制素-A均随孕龄的增加而变化,故必须用超声来确认孕龄。(2)由于唐氏综合征胎儿往往伴有宫内生长迟缓和畸形,超声检查可直接发现这些异常。(3) 唐氏综合征还有一些特殊的表现,如张力减退,粗短颈和近端肢体骨短小。研究认为某些异常可早在孕8~14周时发现,现分述如下。
1.颈部半透明厚度(nuchal translucency,NT):在中孕及晚孕期,胎儿颈部水囊状淋巴管瘤(nuchal cystic hygromas)或颈部水肿与染色体异常有密切关系。Cullen等[8]报道了145例颈部水肿胎儿中有52例(36%)有染色体异常,其中三体综合征占43例。而44例水囊状淋巴管瘤中33例(75%)有染色体异常。因而,有必要在孕早期检测有否颈部水肿作为染色体异常的标记。以5MHz探头于腹部作探测,先找到胎头的矢状切面,测胎儿头臀长度以及颈椎部位皮肤与颈椎软组织间的最大透亮厚度,此为NT。探测时切勿将羊膜误作为胎儿皮肤。
Nicolaides等[9]对孕10~14周的孕妇进行了827次胎儿NT测定,其中51例胎儿NT厚度为3~8mm,其中18例(35%)为染色体异常,均为三体征,都发生在35岁以上;而776例胎儿NT厚度为0~2mm者,有10例(1%)为染色体异常,其中4例为三体,6例为47,XXY、47,XXX及嵌合型者。
至中孕期时,胎儿NT可发展为两方面:(1)水囊状淋巴管瘤,往往为Turner综合征的体征,是由于颈部淋巴管囊过度膨胀所致。(2)水肿胎儿的早期症状。水肿胎儿发病原因是多方面的,三体占了多数,其余为胎儿心血管、肺部畸形、骨骼发育不全、宫内感染或其它代谢及血液、器官功能紊乱等。
目前,在临床上不再用颈部水肿或水囊状淋巴管瘤这些名称,而用NT(颈部透明度)来表示观察结果。在染色体正常组中,大部分增厚的NT在孕20周时会自然消失。
孕10~14周时,>80%的三体胎儿的颈部半透明厚度增加[10]。Zimmermann[3]等对孕妇年龄25~44岁,孕10~13周的1 151例进行超声筛查,在23例染色体异常胎儿中有9例NT>3 mm。Jauniaux等[5]发现,66.7%的病例NT超过95百分位数。Martinez等[11]对553例孕10~13周孕妇筛查,以NT≥3 mm作为分界线,534例正常胎儿中有19例NT≥3mm,19例染色体异常胎儿中11例NT>3mm,检出率为57.8%,特异性为96.4%。以3mm为分界线,21、18、13三体的检出率高达80%,假阳性4%~5%[10]。
2.胎儿头臀长度(CRL):唐氏综合征的宫内生长迟缓可有两种不同的表型,取决于多余的染色体从双亲的来源。如来源于父方,则生长良好,胎头大小比例正常。而来源于母方,就会出现严重不对称的生长迟缓。Jauniaux等[5]报道,孕早期62.5%(10/16)的唐氏综合征胎儿的CRL低于第5百分位数。提示,CRL可作为唐氏综合征孕早期筛查项目之一。
3.脐动脉搏动指数(umbilical artery pulsatility index,UAPI):Martinez等[11]还发现,在534例染色体正常的胎儿孕10~13周时有26例UAPI超过第95百分位数;19例染色体异常胎儿中有11例UAPI超过第95百分位数;检出率为57.8%,特异性为95.1%。脐动脉血流检测间接地提供了一个可靠的胎儿胎盘循环灌注状况方法。这个研究提示,UAPI可作为早期唐氏综合征筛查的一个指标。染色体异常时UAPI升高的原因还不清楚。可能与胎盘形成不足和滋养叶表面剥离有关。染色体异常的胎儿常常有早期功能改变和形态发育异常,主要出现在高流产率及早期宫内生长迟缓的胎儿。
4.胎心率:Jauniaux等[5]还发现,在13例21三体染色体异常胎儿中有4例早期(孕10~14周)胎心率低于第5百分位数(30.8%)。而Jauniaux等[12]在1996年的报道中发现21三体胎儿的平均心率明显高于正常胎儿。胎心率增加的原因可能与心脏发育延迟及心脏畸形有关。心动过缓可能与胎儿发育不良及胎儿死亡的先兆有关。
三、早期多项目综合筛查
由于单独血清学筛查或超声检查唐氏综合征检出的阳性率低,综合血清学及超声检查可提高检出率,降低假阳性率。选择筛查项目必须符合下列3点:(1)所选择筛查项目必须是疾病比较常见的和显著的标记;(2)必须是既快捷又便宜和低的假阳性率(通常≤5%);(3)阳性结果必须有利于诊断试验及随访[1]。下面介绍几种早期妊娠多项目综合筛查及结果。
1.PAPP-A+游离β-hCG:孕10~13周时测定PAPP-A及游离β-hCG,唐氏综合征的检出率大约为65%,假阳性率为5%[1]。
2.NT+PAPP-A:孕10~13周NT≥3 mm和低PAPP-A水平的染色体异常检出率为39%,假阳性率为2%,游离β-hCG和AFP可以协助诊断。
3.抑制素-A+游离β-hCG:抑制素-A结合游离β-hCG染色体异常的检出率为30.3%,假阳性率为5%[6]。
4.CRL+NT+胎盘部分水泡状变性:超声检查CRL、NT及部分水泡状胎盘,染色体异常的检出率为88.9%(16/18),84.6%染色体异常者β-hCG高于正常(11/13)[5]。水泡状胎盘主要为三倍体及性染色体异常性疾病的表现。
5.UAPI+NT:UAPI结合NT,染色体异常的检出率为84.2%,假阳性率为6.6%,阳性预测值31.3%,阴性预测值99.4%[11]。
四、中期妊娠的非侵入性筛查
早期遗漏筛查者、早期筛查可疑者或阳性者,需要在中期妊娠继续筛查。由于唐氏综合征有多发性畸形及特殊的表型,结构的异常在中期妊娠逐渐明显,超声检查在早期更易检出畸形;而且,一旦检出畸形可行中期妊娠引产,以减少畸形儿的出生。早、中孕期连续筛查可提高检出率。本文所指的中期妊娠是指孕14~22 周。
1.母体三项血清标记物的检测:母体血清中的AFP、uE3及β-hCG在孕中期的检测意义同孕早期一样,唐氏综合征者仍表现为低AFP、低uE3及高β-hCG[13],故孕中期对这三项血清标记物的检测在筛查唐氏综合征中仍有一定意义。
2.孕妇尿游离β-hCG的测定:测定孕妇尿中的游离β-hCG比测定血清hCG更容易方便,但易受尿量的影响。为了减少误差,Hayashi等[14]测定了孕14~19周孕妇尿游离β-hCG与肌酐比值,发现3例唐氏综合征胎儿母体尿游离β-hCG与肌酐比值≥2.0,检出率为100%。
3.胎儿结构异常的检查:唐氏综合征胎儿颈部厚度(>5mm)、水囊状淋巴管瘤、脑室扩张(≥10mm)、肾盂扩张(>3mm)及肠回声均可通过超声检查发现。研究证明,如超声检查发现上述某一种异常,再加上三项血清标记阳性,染色体异常的危险性增加5.6倍。反之,超声检查正常,即使三项血清标记阳性,染色体异常的危险性则减少56%。
4.胎耳长度测量:在采用染色体核型分析以前,往往根据新生儿体型畸形来诊断唐氏综合征,包括偏平脸、低张、颈部增厚、身材矮短、第5手指中节缺如、通贯手及外耳发育不良。其中外耳测量是最为可靠的体征。因为胎耳较小,并不是IUGR之故,而是为胎耳本身发育不良所致。目前在推广非侵入性唐氏综合征筛查时,超声测量胎耳长度值得推荐。
Awwad等[15]于1994年认为超声测胎耳长度为唐氏综合征主要的超声标记之一。对孕20~28周中期妊娠孕妇418例应用Aloka SSD—650超声仪测到胎耳纵长。418例中10例有染色体异常(4例21三体、6例18三体),其余408例均为正常染色体胎儿。根据正常408例胎耳长度与孕周的关系,得出直线回归方程式。
EEL(预计胎耳长)=-6.00+1.075GA(孕周)然后,将超声测得的胎耳长(MEL)与预计胎耳长(EEL)算出其比值,在唐氏综合征中其比值比正常胎儿为低,21三体为0.78(S=0.05,P<0.0001);18三体为0.76(S=0.11,P<0.001);而正常组为1.00(S=0.12)。因而,MEL/EEL比值以0.8为正常与异常的分界线,假阳性率为1.2%,21三体的灵敏度为75%,特异性为 98.8%;18三体的灵敏度为83.3%,特异性为98.8%。
5.股骨长度测量:部分唐氏综合征胎儿可表现为股骨过短。Nybery等[13]报道,在18例唐氏综合征胎儿中有4例股骨过短(22.2%)。
股骨长度测量是从骨干的最近端到末端,不包括股骨头及末端骨骺。
股骨过短的定义:测量值/预测值的股骨长度比值≤0.9[16]。
股骨长度的预测值=-0.966+0.866×双顶径(BPD)[16]。
股骨长度的预测值与双顶径有关,与孕龄无关。
6.股骨/足长度比值:足长的测量是从足后跟到大趾顶端。
Grandjean等[17]发现,孕14~24周超声测量股骨/足长度比值能提高检出率。取临界值为0.88,敏感性为35%,假阳性为4.6%;如果临界值为0.85,敏感性为15%,假阳性为2.3%。
7.BPD/股骨长度比值:如PBD/股骨长度比值≥1.80,敏感性为40%,特异性为97.8%,假阳性率为2.2%[18]。
8.(股骨+肱骨长度)/足长度比值:
肱骨测量是从骨干的最近端到末端。
Johnson等[19]在研究中发现,一些唐氏综合征胎儿股骨短,另一些胎儿肱骨短,但很少有二者都短的病例。他们用超声筛查814例孕妇,其中36例唐氏综合征(股骨+肱骨长度)/足长度比值≤1.75,OR 15.3,检出率为53%,特异性为93%,阳性预测值0.32,阴性预测值0.97,假阳性率为6.9%。
35岁孕妇经过孕早期、中期的连续筛查,如阴性其唐氏综合征的危险性<1/270,不需进一步检查;如阳性,危险性>1/270,以超声确定胎龄。如胎龄正确(与末次月经误差<10天),应提供遗传咨询,行羊水穿刺,作染色体检查。如胎龄不正确(与末次月经误差≥10天),在孕16 周时重复筛查。总之,通过孕早、中期的血清标记物及超声筛查,结合孕妇年龄、家族史、生育史及超声核实胎龄,筛查出阳性病例后,才能进行侵入性检查,作核型分析来确诊。
参考文献
1 Saller DN. Maternal Serum screening for fetal Down syndrome: clinical aspects. Clin Obstet Gynecol, 1996,39:783-793.
2 Aitken DA, Mclaw G, Crossley JA, et al. Firsttrimester biochemical screening for fetal chromosome abnormalities and neural tube defects. Prenat Diagn, 1993,13:681-689.
3 Zimmermann R, Hucha A, Savoldelli G, et al. Serum parameters and nuchal translucency in first trimester screening for fetal chromosoma abnormalities. Br J Obstet Gynecol, 1996,103:1009-1014.
4 Wald NJ, George L, Smith D, et al. Serum screening for Down's syndrome between 8 and 14 weeks of pregnancy. Br J Obstet Gynaecol, 1996,103:407-412.
5 Jauniaux E, Brown R, Snijders RJM, et al. Early prenatal diagnosis of triploidy. Am J Obstet Gynecol, 1997,176:550-554.
6 Noble PL, Wallace EM, Snijders RJM, et al. Maternal serum inhibin-A and free β-hCG concentrations in trisomy 21 pregnancies at 10 to 14 weeks of gestation. Br J Obstet Gynecol, 1997,104:367-371.
7 Wald NJ, Densem JW, Smith D, et al. Four-marker serum screening for Down's syndrome. Prenate Diagn, 1994,14:707-716.
8 Cullen MT, Gabrielli S, Green JJ, et al. Diagnosis and significance of cystic hygroma in the first trimester. Prenate Diagn, 1990,10:643-651.
9 Nicolaides KH, Azar G, Byrne D, et al. Fetal nuchal translucency: ultrasound screening for chromosomal defects in first trimester of pregnancy. BMJ, 1992,304(April 4):867-869.
10 Nicolaides KH, Brizot ML, Snijders RJM. Fetal nuchal translucency: ultrasound screening for fetal trisomy in the first trimester of pregnancy. Br J Obstet Gynaecol, 1994,101:782-786.
11 Martinez JM, Borrell A, Antolin E, et al. Combining nuchal translucency with umbilical Doppler velocimetry for detecting fetal trisomies in the first trimester of pregnancy. Br J Obstet Gynaecol, 1997,104:11-14.
12 Jauniaux E, Gavriil P, Khun P, et al. Fetal heart rate and unbilicoplacental Doppler flow velocity waveforms in early pregnancies with a chromosomal abnormality and/or increased nuchal translucency thickness. Hum Reprod, 1996,11:435-439.
13 Nybery DA, Luthy DA, Cheng EY, et al. Role of prenatal ultrasonography in women with positive screen for Down syndrome on the basis of maternal serum markers. Am J Obstet Gynecol, 1995,173:1030-1035.
14 Hayashi M, Kozu H, Takei H. Maternal urinary free β-subunit of human chorionic gonadotrophin: creatinine ratios and fetal chromosomal abnormalities in the second trimester of pregnancy. Br J Obstet Gynecol, 1996,103:577-580.
15 Awwad JT, Azar GB, Karam KS, et al. Ear length: a potential sonographic marker for Down syndrome. Int J Gynecol Obstet, 1994,44:233-238.
16 Nyberg DA, Resta RG, Hickok DE, et al. Femur length shortening in the detection of Down syndrome: is prenatal screening feasible? Am J Obstet Gynecol, 1990,162:1247-1252.
17 Grandjean H, Sarranon MF. Femur/foot length ratio for detection of Down syndrome: results of a multicenter prospective study. Am J Obstet Gynecol, 1995,173:16-19.
18 Brumfield CG, Hauth JC, Cloud GA, et al. Sonographic measuements and ratios in fetuses with Down's syndrome. Obstet Gynecol, 1989,73:644-646.
19 Johnson MP, Michaelson JE, Barr M, et al. Combining humerus and femur length for improved ultrasonographic identification of pregnancies at increased risk for trisomy 21. Am J Obstet Gynecol, 1995,172:1229-1235.
作者单位:200090 上海市杨浦区中心医院妇产科
(收稿:1997-08-19 修回:1997-12-29)
(本文编辑:侯存明)
唐氏综合征妊娠早期及中期筛查的进展(转载)
唐氏综合征是最常见的染色体异常性疾病,占受孕人数的1%,每700个出生婴儿中就有1
个唐氏综合征患儿。大多数在早期发生自然流产。唐氏综合征胎儿通常生长迟缓,有严
重的头、面、心脏和肢体畸形。所有唐氏综合征患儿都有精神异常,还可伴有消化道和
肌肉、骨骼畸形。因为目前唐氏综合征还无法治疗,故只有进行早期诊断,终止妊娠,
才能达到优生的目的。目前已开展的羊水穿刺及绒毛活检仅限于高危人群,并仅能检出
20%的唐氏综合征胎儿。此外,绒毛活检及羊水穿刺均为侵入性检查,分别可引起胎儿
羊膜束带综合征、截肢损伤等并发症,且有1%~2%的流产率。所以,近年来许多学者致
力于早期(8~14孕周)母体血清标记物的筛查及胎儿的超声波检查的研究,现将有关的
研究进展综述如下。
一、妊娠早期母体血清标记物筛查
1.甲胎蛋白(alpha-fetoprotein,afp):afp是胎儿血清中最常见的球蛋白,其结
构和功能类似于白蛋白。早孕期由卵黄囊产生,晚孕期胎儿肝脏大量产生。胎儿上皮完
整时,少量的afp从胎儿泌尿道排入羊水中。非孕妇的血清中可以发现很少量的afp。孕
妇血清中的afp在早、中孕期逐渐增加,大约在孕28~32周时达到相对稳定期。当胎儿
出现开放性神经管缺陷或腹壁缺陷时,羊水和母体血清中的afp显著升高。
由于各个实验室报告的数值不同,所以,所有实验室均以正常人群中位数的倍数(
multipleoftheunaffectedpopulationmedian,mom)作为检验结果的标准。正常人群为1.
0mom。
母体血清afp筛查最初用于开放性神经管缺陷的诊断。大多数有开放性神经管缺陷
胎儿的母体血清afp高于2.0mom。如afp轻度升高 (2.0~3.0mom)时重复血清测定有意义
。如第二次afp在1.0~2.0mom之间,提示胎儿可能正常。而唐氏综合征的母体afp低于
1.0mom[1]。aitken等[2]报道结果为0.65mom并多在0.47~0.86mom之间。一般来讲
,afp需同时结合其它检查,对筛查唐氏综合征才有意义[3,4]。
2.游离雌三醇(ue3):雌三醇是由经胎儿肾上腺和肝脏最后由胎盘合成的一种甾体
类激素。它以游离形式直接由胎盘分泌进入母体循环。在母体肝脏内很快地以硫酸盐和
葡萄糖苷酸雌三醇的形式代谢。母体血清中ue3水平随着孕周的增长而增加。唐氏综合
征胎儿的母体血清 ue3偏低,推测可能与胎儿生长迟缓有关。
3.绒毛膜促性腺激素(hcg):hcg是妇产科医生们所熟悉最常使用的妊娠试验激素。
它是由α和 β二聚体的糖蛋白组成。α亚单位为垂体前叶激素所共有。β亚单位是hcg
所特异的。完整的hcg全部是由胎盘绒毛膜的合体滋养层产生。现认为是由滋养层过渡
型细胞和合体细胞产生的。在妊娠的前8周增加很快,以维持妊娠。在大约8周以后,
hcg逐渐下降,直到大约20周达到相对稳定。孕妇血清中的hcg主要以完整形式存在,游
离β-hcg占总hcg的1%~8%。唐氏综合征时母体血清hcg升高,约为2.11mom。有报道唐
氏综合征在孕8~14周时总 hcg、游离α-hcg和游离β-hcg,分别为1.23、0.86和1.
79mom。jauniaux[5]在对58862例单胎早期妊娠进行筛查, 13例dovn综合征中有11例
(84.6%)的总hcg>2.5mom。noble[6]对76例唐氏综合征胎儿及800例正常胎儿,在孕
10~14周时测定母体血清游离β-hcg浓度,发现唐氏综合征胎儿的母体血清游离β-hcg
浓度显著高于正常(p<0.0001),敏感性为 28.9%,假阳性率为5%。唐氏综合征胎儿的母
体血清hcg升高的原因还不很清楚。
孕妇的年龄可以影响筛查的阳性率和估计检出率。在正常的人群中afp为1.0mom,
ue3为1.0mom,hcg为1.0mom。在正常人群中,孕妇发生唐氏综合征的危险性为1/1200,
在25岁人群中可使危险性从通常的1/1200降至1/4800;35岁者从1/270降至1/1080;45
岁者从1/20降至1/80。
唐氏综合征时 afp为0.74mom,ue3为0.71mom,hcg为2.11mom。这个数值表示与孕
妇年龄相关的发生唐氏综合征的危险性增加了4倍。25岁的人群中危险性从通常发生率1
/1200增至1/300;35岁者从1/270增至1/72;45岁者从1/20增至1/5。
在25岁人群中,筛查的阳性率为3.5%,检出率为46%;35岁人群,筛查的阳性率为
13.5%,检出率为73%;45岁人群,筛查的阳性率为55%,检出率为98%。
4.妊娠相关血浆蛋白a(pregnancy-associatedplasmaproteina,papp-a):papp-a是
一个大分子蛋白复合物,产生于胎盘。
zimmermann等[3]对孕妇年龄25~44岁的1151例在孕10~13周进行研究时发现,
21和18三体胎儿的母体血清papp-a水平低于正常,分别为0.51和0.08mom。提示papp-a
可作为一个独立的血清标记物。wald等[4]在9个国家21个产科中心对孕8~14周的孕
妇进行afp、ue3、总hcg、游离α-hcg、游离β-hcg、papp-a和抑制素a7个血清标记物
筛查中,共检出77例唐氏综合征胎儿。发现患病组的 papp-a在孕8~14周时是低的,孕
8~9周为0.36mom;孕10周为0.44mom;孕11周为0.33mom;孕12~14周为 0.59mom。表
明papp-a随着妊娠的持续也有增高的趋势。wald认为papp-a和游离β-hcg是最能区别唐
氏综合征与正常胎儿的血清标记物。49%的唐氏综合征胎儿母体血清papp-a低于第5百分
位数。
使用papp-a、游离β-hcg结合孕妇年龄在孕8~14周时唐氏综合征的检出率为62%,
假阳性率为5%;而孕15~22周时检出率为59%[7]。
5.抑制素-a(inhibin-a):抑制素是一个异二聚体的糖蛋白。β-亚单位与一个βa-
亚单位组成抑制素-a;与βb-亚单位组成抑制素-b。血液中以无生物活性的游离亚单位
存在。妊娠时母体血清中的大量抑制素被认为来源于胎盘的合体滋养层。早孕时母体血
清中不能检出抑制素-b,抑制素-a在孕 10~12周时增加并达到高峰,在妊娠中期下降
成一个平台,但到妊娠晚期时再一次升高,足月时达最高水平。
抑制素-a同hcg一样在并发唐氏综合征时升高。抑制素在母体的血清浓度不依赖于
hcg的浓度而变化。
noble等[6]发现在12.8%的唐氏综合征胎儿母体血清中的抑制素-a>95百分位数。
而wald等[4]测定了77例唐氏综合征胎儿早孕时母体血清的抑制素-a为1.19mom,认为
对诊断唐氏综合征也有所帮助。
二、妊娠早期超声检查
超声检查在唐氏综合征筛查中占有重要地位。其主要作用有:(1)各种血清筛查是
以孕龄为基础,afp、ue3、hcg和抑制素-a均随孕龄的增加而变化,故必须用超声来确
认孕龄。(2)由于唐氏综合征胎儿往往伴有宫内生长迟缓和畸形,超声检查可直接发现
这些异常。(3)唐氏综合征还有一些特殊的表现,如张力减退,粗短颈和近端肢体骨短
小。研究认为某些异常可早在孕8~14周时发现,现分述如下。
1.颈部半透明厚度 (nuchaltranslucency,nt):在中孕及晚孕期,胎儿颈部水囊状
淋巴管瘤(nuchalcystichygromas)或颈部水肿与染色体异常有密切关系。cullen等[8
]报道了145例颈部水肿胎儿中有52例(36%)有染色体异常,其中三体综合征占43例。而
44例水囊状淋巴管瘤中33例(75%)有染色体异常。因而,有必要在孕早期检测有否颈部
水肿作为染色体异常的标记。以5mhz探头于腹部作探测,先找到胎头的矢状切面,测胎
儿头臀长度以及颈椎部位皮肤与颈椎软组织间的最大透亮厚度,此为nt。探测时切勿将
羊膜误作为胎儿皮肤。
nicolaides等[9]对孕 10~14周的孕妇进行了827次胎儿nt测定,其中51例胎儿
nt厚度为3~8mm,其中18例(35%)为染色体异常,均为三体征,都发生在35岁以上;而
776例胎儿nt厚度为0~2mm者,有10例(1%)为染色体异常,其中4例为三体,6例为47,
xxy、47,xxx及嵌合型者。
至中孕期时,胎儿nt可发展为两方面:(1)水囊状淋巴管瘤,往往为turner综合征
的体征,是由于颈部淋巴管囊过度膨胀所致。(2)水肿胎儿的早期症状。水肿胎儿发病
原因是多方面的,三体占了多数,其余为胎儿心血管、肺部畸形、骨骼发育不全、宫内
感染或其它代谢及血液、器官功能紊乱等。
目前,在临床上不再用颈部水肿或水囊状淋巴管瘤这些名称,而用nt(颈部透明度)
来表示观察结果。在染色体正常组中,大部分增厚的nt在孕20周时会自然消失。
孕10~14周时,>80%的三体胎儿的颈部半透明厚度增加[10]。zimmermann[3]
等对孕妇年龄25~44岁,孕10~13周的 1151例进行超声筛查,在23例染色体异常胎儿
中有9例nt>3mm。jauniaux等[5]发现,66.7%的病例nt超过95百分位数。 martinez等
[11]对553例孕10~13周孕妇筛查,以nt≥3mm作为分界线,534例正常胎儿中有19例
nt≥3mm,19例染色体异常胎儿中11例nt>3mm,检出率为57.8%,特异性为96.4%。以3mm
为分界线,21、18、13三体的检出率高达80%,假阳性4%~5% [10]。
2.胎儿头臀长度(crl):唐氏综合征的宫内生长迟缓可有两种不同的表型,取决于
多余的染色体从双亲的来源。如来源于父方,则生长良好,胎头大小比例正常。而来源
于母方,就会出现严重不对称的生长迟缓。jauniaux等[5]报道,孕早期62.5%(10/16
)的唐氏综合征胎儿的crl低于第5百分位数。提示,crl可作为唐氏综合征孕早期筛查项
目之一。
3.脐动脉搏动指数 (umbilicalarterypulsatilityindex,uapi):martinez等[11
]还发现,在534例染色体正常的胎儿孕 10~13周时有26例uapi超过第95百分位数;19
例染色体异常胎儿中有11例uapi超过第95百分位数;检出率为57.8%,特异性为 95.1%
。脐动脉血流检测间接地提供了一个可靠的胎儿胎盘循环灌注状况方法。这个研究提示
,uapi可作为早期唐氏综合征筛查的一个指标。染色体异常时 uapi升高的原因还不清
楚。可能与胎盘形成不足和滋养叶表面剥离有关。染色体异常的胎儿常常有早期功能改
变和形态发育异常,主要出现在高流产率及早期宫内生长迟缓的胎儿。
4.胎心率:jauniaux等[5]还发现,在13例21三体染色体异常胎儿中有4例早期(
孕10~14周)胎心率低于第5百分位数(30.8%)。而jauniaux等[12]在1996年的报道中
发现21三体胎儿的平均心率明显高于正常胎儿。胎心率增加的原因可能与心脏发育延迟
及心脏畸形有关。心动过缓可能与胎儿发育不良及胎儿死亡的先兆有关。
三、早期多项目综合筛查
http://www.mitbbs.com/article_t/NextGeneration/23025233.html
个唐氏综合征患儿。大多数在早期发生自然流产。唐氏综合征胎儿通常生长迟缓,有严
重的头、面、心脏和肢体畸形。所有唐氏综合征患儿都有精神异常,还可伴有消化道和
肌肉、骨骼畸形。因为目前唐氏综合征还无法治疗,故只有进行早期诊断,终止妊娠,
才能达到优生的目的。目前已开展的羊水穿刺及绒毛活检仅限于高危人群,并仅能检出
20%的唐氏综合征胎儿。此外,绒毛活检及羊水穿刺均为侵入性检查,分别可引起胎儿
羊膜束带综合征、截肢损伤等并发症,且有1%~2%的流产率。所以,近年来许多学者致
力于早期(8~14孕周)母体血清标记物的筛查及胎儿的超声波检查的研究,现将有关的
研究进展综述如下。
一、妊娠早期母体血清标记物筛查
1.甲胎蛋白(alpha-fetoprotein,afp):afp是胎儿血清中最常见的球蛋白,其结
构和功能类似于白蛋白。早孕期由卵黄囊产生,晚孕期胎儿肝脏大量产生。胎儿上皮完
整时,少量的afp从胎儿泌尿道排入羊水中。非孕妇的血清中可以发现很少量的afp。孕
妇血清中的afp在早、中孕期逐渐增加,大约在孕28~32周时达到相对稳定期。当胎儿
出现开放性神经管缺陷或腹壁缺陷时,羊水和母体血清中的afp显著升高。
由于各个实验室报告的数值不同,所以,所有实验室均以正常人群中位数的倍数(
multipleoftheunaffectedpopulationmedian,mom)作为检验结果的标准。正常人群为1.
0mom。
母体血清afp筛查最初用于开放性神经管缺陷的诊断。大多数有开放性神经管缺陷
胎儿的母体血清afp高于2.0mom。如afp轻度升高 (2.0~3.0mom)时重复血清测定有意义
。如第二次afp在1.0~2.0mom之间,提示胎儿可能正常。而唐氏综合征的母体afp低于
1.0mom[1]。aitken等[2]报道结果为0.65mom并多在0.47~0.86mom之间。一般来讲
,afp需同时结合其它检查,对筛查唐氏综合征才有意义[3,4]。
2.游离雌三醇(ue3):雌三醇是由经胎儿肾上腺和肝脏最后由胎盘合成的一种甾体
类激素。它以游离形式直接由胎盘分泌进入母体循环。在母体肝脏内很快地以硫酸盐和
葡萄糖苷酸雌三醇的形式代谢。母体血清中ue3水平随着孕周的增长而增加。唐氏综合
征胎儿的母体血清 ue3偏低,推测可能与胎儿生长迟缓有关。
3.绒毛膜促性腺激素(hcg):hcg是妇产科医生们所熟悉最常使用的妊娠试验激素。
它是由α和 β二聚体的糖蛋白组成。α亚单位为垂体前叶激素所共有。β亚单位是hcg
所特异的。完整的hcg全部是由胎盘绒毛膜的合体滋养层产生。现认为是由滋养层过渡
型细胞和合体细胞产生的。在妊娠的前8周增加很快,以维持妊娠。在大约8周以后,
hcg逐渐下降,直到大约20周达到相对稳定。孕妇血清中的hcg主要以完整形式存在,游
离β-hcg占总hcg的1%~8%。唐氏综合征时母体血清hcg升高,约为2.11mom。有报道唐
氏综合征在孕8~14周时总 hcg、游离α-hcg和游离β-hcg,分别为1.23、0.86和1.
79mom。jauniaux[5]在对58862例单胎早期妊娠进行筛查, 13例dovn综合征中有11例
(84.6%)的总hcg>2.5mom。noble[6]对76例唐氏综合征胎儿及800例正常胎儿,在孕
10~14周时测定母体血清游离β-hcg浓度,发现唐氏综合征胎儿的母体血清游离β-hcg
浓度显著高于正常(p<0.0001),敏感性为 28.9%,假阳性率为5%。唐氏综合征胎儿的母
体血清hcg升高的原因还不很清楚。
孕妇的年龄可以影响筛查的阳性率和估计检出率。在正常的人群中afp为1.0mom,
ue3为1.0mom,hcg为1.0mom。在正常人群中,孕妇发生唐氏综合征的危险性为1/1200,
在25岁人群中可使危险性从通常的1/1200降至1/4800;35岁者从1/270降至1/1080;45
岁者从1/20降至1/80。
唐氏综合征时 afp为0.74mom,ue3为0.71mom,hcg为2.11mom。这个数值表示与孕
妇年龄相关的发生唐氏综合征的危险性增加了4倍。25岁的人群中危险性从通常发生率1
/1200增至1/300;35岁者从1/270增至1/72;45岁者从1/20增至1/5。
在25岁人群中,筛查的阳性率为3.5%,检出率为46%;35岁人群,筛查的阳性率为
13.5%,检出率为73%;45岁人群,筛查的阳性率为55%,检出率为98%。
4.妊娠相关血浆蛋白a(pregnancy-associatedplasmaproteina,papp-a):papp-a是
一个大分子蛋白复合物,产生于胎盘。
zimmermann等[3]对孕妇年龄25~44岁的1151例在孕10~13周进行研究时发现,
21和18三体胎儿的母体血清papp-a水平低于正常,分别为0.51和0.08mom。提示papp-a
可作为一个独立的血清标记物。wald等[4]在9个国家21个产科中心对孕8~14周的孕
妇进行afp、ue3、总hcg、游离α-hcg、游离β-hcg、papp-a和抑制素a7个血清标记物
筛查中,共检出77例唐氏综合征胎儿。发现患病组的 papp-a在孕8~14周时是低的,孕
8~9周为0.36mom;孕10周为0.44mom;孕11周为0.33mom;孕12~14周为 0.59mom。表
明papp-a随着妊娠的持续也有增高的趋势。wald认为papp-a和游离β-hcg是最能区别唐
氏综合征与正常胎儿的血清标记物。49%的唐氏综合征胎儿母体血清papp-a低于第5百分
位数。
使用papp-a、游离β-hcg结合孕妇年龄在孕8~14周时唐氏综合征的检出率为62%,
假阳性率为5%;而孕15~22周时检出率为59%[7]。
5.抑制素-a(inhibin-a):抑制素是一个异二聚体的糖蛋白。β-亚单位与一个βa-
亚单位组成抑制素-a;与βb-亚单位组成抑制素-b。血液中以无生物活性的游离亚单位
存在。妊娠时母体血清中的大量抑制素被认为来源于胎盘的合体滋养层。早孕时母体血
清中不能检出抑制素-b,抑制素-a在孕 10~12周时增加并达到高峰,在妊娠中期下降
成一个平台,但到妊娠晚期时再一次升高,足月时达最高水平。
抑制素-a同hcg一样在并发唐氏综合征时升高。抑制素在母体的血清浓度不依赖于
hcg的浓度而变化。
noble等[6]发现在12.8%的唐氏综合征胎儿母体血清中的抑制素-a>95百分位数。
而wald等[4]测定了77例唐氏综合征胎儿早孕时母体血清的抑制素-a为1.19mom,认为
对诊断唐氏综合征也有所帮助。
二、妊娠早期超声检查
超声检查在唐氏综合征筛查中占有重要地位。其主要作用有:(1)各种血清筛查是
以孕龄为基础,afp、ue3、hcg和抑制素-a均随孕龄的增加而变化,故必须用超声来确
认孕龄。(2)由于唐氏综合征胎儿往往伴有宫内生长迟缓和畸形,超声检查可直接发现
这些异常。(3)唐氏综合征还有一些特殊的表现,如张力减退,粗短颈和近端肢体骨短
小。研究认为某些异常可早在孕8~14周时发现,现分述如下。
1.颈部半透明厚度 (nuchaltranslucency,nt):在中孕及晚孕期,胎儿颈部水囊状
淋巴管瘤(nuchalcystichygromas)或颈部水肿与染色体异常有密切关系。cullen等[8
]报道了145例颈部水肿胎儿中有52例(36%)有染色体异常,其中三体综合征占43例。而
44例水囊状淋巴管瘤中33例(75%)有染色体异常。因而,有必要在孕早期检测有否颈部
水肿作为染色体异常的标记。以5mhz探头于腹部作探测,先找到胎头的矢状切面,测胎
儿头臀长度以及颈椎部位皮肤与颈椎软组织间的最大透亮厚度,此为nt。探测时切勿将
羊膜误作为胎儿皮肤。
nicolaides等[9]对孕 10~14周的孕妇进行了827次胎儿nt测定,其中51例胎儿
nt厚度为3~8mm,其中18例(35%)为染色体异常,均为三体征,都发生在35岁以上;而
776例胎儿nt厚度为0~2mm者,有10例(1%)为染色体异常,其中4例为三体,6例为47,
xxy、47,xxx及嵌合型者。
至中孕期时,胎儿nt可发展为两方面:(1)水囊状淋巴管瘤,往往为turner综合征
的体征,是由于颈部淋巴管囊过度膨胀所致。(2)水肿胎儿的早期症状。水肿胎儿发病
原因是多方面的,三体占了多数,其余为胎儿心血管、肺部畸形、骨骼发育不全、宫内
感染或其它代谢及血液、器官功能紊乱等。
目前,在临床上不再用颈部水肿或水囊状淋巴管瘤这些名称,而用nt(颈部透明度)
来表示观察结果。在染色体正常组中,大部分增厚的nt在孕20周时会自然消失。
孕10~14周时,>80%的三体胎儿的颈部半透明厚度增加[10]。zimmermann[3]
等对孕妇年龄25~44岁,孕10~13周的 1151例进行超声筛查,在23例染色体异常胎儿
中有9例nt>3mm。jauniaux等[5]发现,66.7%的病例nt超过95百分位数。 martinez等
[11]对553例孕10~13周孕妇筛查,以nt≥3mm作为分界线,534例正常胎儿中有19例
nt≥3mm,19例染色体异常胎儿中11例nt>3mm,检出率为57.8%,特异性为96.4%。以3mm
为分界线,21、18、13三体的检出率高达80%,假阳性4%~5% [10]。
2.胎儿头臀长度(crl):唐氏综合征的宫内生长迟缓可有两种不同的表型,取决于
多余的染色体从双亲的来源。如来源于父方,则生长良好,胎头大小比例正常。而来源
于母方,就会出现严重不对称的生长迟缓。jauniaux等[5]报道,孕早期62.5%(10/16
)的唐氏综合征胎儿的crl低于第5百分位数。提示,crl可作为唐氏综合征孕早期筛查项
目之一。
3.脐动脉搏动指数 (umbilicalarterypulsatilityindex,uapi):martinez等[11
]还发现,在534例染色体正常的胎儿孕 10~13周时有26例uapi超过第95百分位数;19
例染色体异常胎儿中有11例uapi超过第95百分位数;检出率为57.8%,特异性为 95.1%
。脐动脉血流检测间接地提供了一个可靠的胎儿胎盘循环灌注状况方法。这个研究提示
,uapi可作为早期唐氏综合征筛查的一个指标。染色体异常时 uapi升高的原因还不清
楚。可能与胎盘形成不足和滋养叶表面剥离有关。染色体异常的胎儿常常有早期功能改
变和形态发育异常,主要出现在高流产率及早期宫内生长迟缓的胎儿。
4.胎心率:jauniaux等[5]还发现,在13例21三体染色体异常胎儿中有4例早期(
孕10~14周)胎心率低于第5百分位数(30.8%)。而jauniaux等[12]在1996年的报道中
发现21三体胎儿的平均心率明显高于正常胎儿。胎心率增加的原因可能与心脏发育延迟
及心脏畸形有关。心动过缓可能与胎儿发育不良及胎儿死亡的先兆有关。
三、早期多项目综合筛查
http://www.mitbbs.com/article_t/NextGeneration/23025233.html
Subscribe to:
Posts (Atom)